Principal torus bundles of Lorentzian ${\mathcal S}$-manifolds and the φ-null Osserman condition

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On null-geodesic completions of Lorentzian manifolds

We study the question of local and global uniqueness of completions, based on null geodesics, of Lorentzian manifolds. We show local uniqueness of such boundary extensions. We give a necessary and sufficient condition for existence of unique maximal completions. The condition is verified in several situations of interest. This leads to existence and uniqueness of maximal spacelike conformal bou...

متن کامل

Completeness, Ricci Blowup, the Osserman and the Conformal Osserman Condition for Walker Signature (2, 2) Manifolds

Walker manifolds of signature (2, 2) have been used by many authors to provide examples of Osserman and of conformal Osserman manifolds of signature (2, 2). We study questions of geodesic completeness and Ricci blowup in this context.

متن کامل

Principal Bundles over Statistical Manifolds

In this paper, we introduce the concept of principal bundles on statistical manifolds. After necessary preliminaries on information geometry and principal bundles on manifolds, we study the α-structure of frame bundles over statistical manifolds with respect to α-connections, by giving geometric structures. The manifold of one-dimensional normal distributions appears in the end as an applicatio...

متن کامل

T-duality for Principal Torus Bundles

In this paper we study T-duality for principal torus bundles with H-flux. We identify a subset of fluxes which are T-dualizable, and compute both the dual torus bundle as well as the dual H-flux. We briefly discuss the generalized Gysin sequence behind this construction and provide examples both of non T-dualizable and of T-dualizable H-fluxes.

متن کامل

Conformally Osserman Manifolds

An algebraic curvature tensor is called Osserman if the eigenvalues of the associated Jacobi operator are constant on the unit sphere. A Riemannian manifold is called conformally Osserman if its Weyl conformal curvature tensor at every point is Osserman. We prove that a conformally Osserman manifold of dimension n 6= 3, 4, 16 is locally conformally equivalent either to a Euclidean space or to a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kodai Mathematical Journal

سال: 2013

ISSN: 0386-5991

DOI: 10.2996/kmj/1372337513